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ABSTRACT

Drought is a slowly varying natural phenomenon and may have wide impacts on a range of sectors. Tre-

mendous efforts have therefore been devoted to drought monitoring and prediction to reduce potential

impacts of drought. Reliable drought prediction is critically important to provide information ahead of time

for early warning to facilitate drought-preparedness plans. TheU.S.DroughtMonitor (USDM) is a composite

drought product that depicts drought conditions in categorical forms, and it has been widely used to track

drought and its impacts for operational and research purposes. The USDM is an assessment of drought

condition but does not provide drought prediction information. Given the wide application of USDM,

drought prediction in a categorical form similar to that of USDMwould be of considerable importance, but it

has not been explored thus far. This study proposes a statistical method for categorical drought prediction by

integrating the USDM drought category as an initial condition with drought information from other sources

such as drought indices from land surface simulation or statistical prediction. Incorporating USDM drought

categories and drought indices from phase 2 of the North American Land Data Assimilation System

(NLDAS-2), the proposed method is tested in Texas for 2001–14. Results show satisfactory performance of

the proposed method for categorical drought prediction, which provides useful information to aid early

warning for drought-preparedness plans.

1. Introduction

Drought is a creeping natural phenomenon with di-

verse geographical and temporal distributions that may

lead to huge impacts on different sectors. For example,

the 2012 U.S. drought alone caused losses of more than

$35 billion (Otkin et al. 2015), and the 2010–11 drought

in Africa plunged eastern Africa into a food security

crisis (Dutra et al. 2013; FEWS NET 2011). With the

potential increase in drought severity and frequency in

the future and the vulnerability of society, it is critically

important to provide accurate drought monitoring and

reliable drought prediction for early warning to aid

drought-preparedness plans and mitigation measures.

The complicated nature of drought and its wide im-

pacts hinder the definition and accurate characterization

of drought. Drought can be classified into meteorologi-

cal drought, agricultural drought, hydrological drought,

and socioeconomic drought. Furthermore, on the basis

of the availability of data, location affected, and partic-

ular application, a variety of drought indices, such as the

standardized precipitation index (SPI; McKee et al.

1993), the standardized runoff index (SRI; Shukla and

Wood 2008), the soil moisture percentile (SMP;

Sheffield et al. 2004; Mo 2008) or its standardization

[standardized soil moisture index (SSI; Hao and

AghaKouchak 2013], and the Palmer drought severity

index (PDSI; Palmer 1965), have been developed to
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monitor drought conditions of different types (Hao and

Singh 2013; Heim 2002; Keyantash and Dracup 2002;

Mishra and Singh 2010). Because an individual drought

indicator is generally not satisfactory for all regions and

seasons for all applications, substantial efforts have been

devoted to multivariate (or integrated, composite)

drought characterization by incorporating drought in-

formation from a variety of sources (Beersma and

Buishand 2004; Kao and Govindaraju 2010; Keyantash

and Dracup 2004; Svoboda et al. 2002; Xia et al. 2014;

Rajsekhar et al. 2015), as reviewed by Hao and Singh

(2015). For example, a variety of multivariate drought

indices that are based on satellite remote sensing (op-

tical, thermal, and microwave) have been developed by

integrating drought-related information (e.g., vegeta-

tion, precipitation, snow, land surface temperature, soil

moisture, and groundwater storage) from different

sensors or bands to aid drought monitoring and assess-

ments at the regional or global scales (Hao et al. 2016b).

Drought prediction is of critical importance to provide

drought information ahead of time for early warning to

aid decision makers for drought management. In recent

decades, various dynamical (or physical) and statistical

models have been developed for drought prediction.

Dynamic models of the climate and ocean system pro-

vide seasonal climate forecasts of variables such as

precipitation that can be used for meteorological

drought prediction (Quan et al. 2012; Yoon et al. 2012;

Mo and Lyon 2015), which in turn can be used as forcing

variables to drive land surface models for agricultural

and hydrological drought prediction (Luo and Wood

2007; Mo and Lettenmaier 2014; Shafiee-Jood et al.

2014; Wood et al. 2002; Yuan et al. 2013, 2015). Statis-

tical methods are generally based on empirical re-

lationships from historical observations, and methods

such as regression, time series analysis, machine learn-

ing, and hybrid models have been used for drought

prediction (Mishra and Desai 2005; Mishra and Singh

2011; Özger et al. 2012; Hao et al. 2016b). For example,

Lyon et al. (2012) developed a baseline prediction

method that is based on the persistence of the drought

indicator SPI for meteorological drought prediction and

has been shown to provide useful drought information

up to several months ahead (Mo and Lyon 2015; Quan

et al. 2012); it was extended recently for agricultural and

integrated meteorological–agricultural drought pre-

diction with SSI and the multivariate standardized

drought index (Hao et al. 2014).

In the United States, the U.S. Drought Monitor

(USDM) has been commonly used to track and display

the magnitude and spatial extent of drought and its

impacts for operational and research purposes (Svoboda

et al. 2002). It is a composite drought product that blends

multiple objective inputs and subjective adjustments on

the basis of local impacts and vulnerability, in which

drought conditions are classified into five drought cate-

gories on the basis of a percentile approach. The USDM

has been widely applied by a diverse set of users to track

drought conditions across the country and has also

been used as a reference for evaluations of drought in-

dices for drought characterization in the United States

(Anderson et al. 2013; McEvoy et al. 2012; Xia et al.

2014). The USDM assesses drought conditions in cate-

gorical form but does not provide drought prediction (or

forecast) information. Drought prediction in the form of

categories similar to those of the USDM would be of

considerable importance and would require the estab-

lishment of a relationship between USDM drought

categories and other drought indicators.

Traditional linear regression to model the response

variable with respect to a suite of covariates (or pre-

dictor variables) is based on the assumption that the

response variable is normally distributed. When the

response variable is categorical (i.e., drought category),

however, the linear regression does not apply and one

must resort to other methods. One method to model

categorical data is the logistic regression, for which the

response variable is binary. For example, Regonda

et al. (2006) proposed a probabilistic forecast method

for categorical streamflow forecast via a logistic re-

gression model and use of a set of large-scale climate

predictors. The logistic regression model falls short in

characterizing the USDM drought category that con-

tains multiple categories that are ordinal (or ordered).

Hao et al. (2016a) introduced the cumulative-link

model, which is a type of ordinal regression model, to

characterize multiple USDM drought categories. By

using this model, the historical USDM drought cate-

gories in Texas are reconstructed on the basis of

drought indices from phase 2 of the North American

Land Data Assimilation System (NLDAS-2).

In this study, a statistical method is proposed for cat-

egorical drought prediction in the form of USDM

drought categories by integrating the USDM drought

category as the initial condition with drought in-

formation from other sources such as drought indices

from land surface simulation or statistical prediction.

The proposed method is tested on the basis of USDM

drought categories and drought indices from NLDAS-2

for the period from 2001 to 2014 in Texas, and results

show satisfactory performance of the proposed method

for categorical drought prediction. This paper is orga-

nized as follows: In section 2, the ordinal time series

modelingmethod is introduced, along with the proposed

categorical drought prediction method and parameter

estimation scheme. Data and measures are discussed in
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section 3. Categorical drought estimation and pre-

diction with the proposed method are presented in

section 4, followed by discussion and conclusions in

section 5.

2. Method

a. Ordinal time series modeling

For a response variable Y with a range of categories

(1, 2, . . . , m), let the corresponding categorical time

series be denoted as Yt (t 5 1, 2, . . . , n). An effective

way to construct a model for the ordinal response of

category j is to invoke the concept of a latent (or un-

observed) response variable X in such a way that the

relationship is monotonic (Agresti 2010; Fokianos and

Kedem 2003):

Y
t
5 j 5 a

j21
#X

t
#a

j
for j5 1, . . . ,m , (1)

where (a0, a1, . . . , am) are a set of parameters (or cut

points) that satisfy

2‘5a
0
,a

1
,⋯,a

m
5‘ . (2)

Here the cut points aj are envisaged as unknown points

on the latent scale with similar values of the latent var-

iable X not distinguished, resulting in the identical re-

sponse Y unless the latent variable is close to the

boundary.

The latent process variable Xt with respect to the co-

variate Z can be expressed as (Agresti 2010; Fokianos

and Kedem 2003)

X
t
52bZ

t21
1 «

t
, (3)

where Zt21 is the covariate (or independent variable) of

the same dimension asXt, b is the vector of parameters,

and «t is a sequence of independent and identically dis-

tributed random variables with the common cumulative

distribution function F.

Thus, the probability of a drought category lower

than a certain category j can be expressed as

P(Y
t
# j)5P(X

t
#a

j
)5F(a

j
1bZ

t21
) . (4)

With different cumulative distribution functions F, there

are different expressions of the model. When F is the

logistic distribution function—that is, F(x) 5 1/[1 1
exp(2x)]—the ordinal regression model can be derived

as (Agresti 2010; Fokianos and Kedem 2003)

log

"
P(Y

t
# j)

P(Y
t
. j)

#
5a

j
1bZ

t21
. (5)

Accordingly, the probability of Yt falling into a certain

drought category j can be expressed as

P(Y
t
5 j)5

exp(a
j
1bZ

t21
)

11 exp(a
j
1bZ

t21
)

2
exp(a

j21
1bZ

t21
)

11 exp(a
j21

1bZ
t21

)
. (6)

From Eq. (5) or Eq. (6), the probability of response

variable Y falling in each drought category at each time

step can be estimated. From the estimated probabilities

of each category, the drought category j with the maxi-

mum probability from among the categories can be

selected.

b. Categorical drought modeling

Categorical time series modeling can now be

employed to aid categorical drought prediction. We

propose to predict the drought category in the target

month (or period) by incorporating the previous

USDM drought categories as the initial condition and

drought information from other sources (e.g., drought

indices from land surface simulations or statistical

prediction) for the target period. The USDM drought

categories, from least to most intense, include abnor-

mally dry (D0), moderate drought (D1), severe

drought (D2), extreme drought (D3), and exceptional

drought (D4). The condition of no drought is denoted

as the ND drought category in this study. The possible

outcome of drought condition at each time includes six

drought categoriesD5 (ND, D0, D1, . . . , D4) that take

on the values 1, 2, . . . , 6, respectively; that is, the first

category is assigned an integer value of 1, the second

category is assigned 2, and so on. Here the assignment

of drought categories is for the purpose of convenience

only and is not unique.

Now let Y be the vector of drought categories at dif-

ferent time periods (n in total) of dimension n 3 1 with

categories C1, C2, . . . , Cm, where m is the number of

drought categories (in this case, m 5 6). To incorporate

information from the previous state of USDM drought

categories as the initial condition to infer the drought

category in the future, the Yt21 of USDM drought cat-

egories for time t2 1 is included in the model. Here, for

parsimonious purposes, only the lag-1 USDM drought

category is included. To take into account drought in-

formation from other sources, such as drought indices

from land surface simulations or statistical prediction,

the vector Wt of a suite of drought indices is also in-

cluded for the prediction of drought category. Accord-

ingly, the model for the prediction of drought category

Yt with respect to the previous USDM drought category
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Yt21 and drought indices Wt can be expressed from Eq.

(5) as

log

"
P(Y

t
# j)

P(Y
t
. j)

#
5a

j
1bW

t
1gY

t21
, (7)

where Yt21 is the USDM drought category at time t2 1;

a, b, and g are associated parameters; and Wt is a suite

of drought indices at time t.

c. Parameter estimation

The parameters a, b, and g in Eq. (7) have to be es-

timated to implement themodel. At any time t,Yt can be

expressed by the vector (Yt1, . . . ,Ytq)
0 of length q5m2

1, for which elements Ytj can be expressed as (Fokianos

and Kedem 2003; Guanche et al. 2014)

Y
tj
5

�
0 if j 6¼ Y

t

1 if j5Y
t

" j5 1, . . . ,q ; " t5 1, . . . ,n .

(8)

Accordingly, a matrix of dimension n 3 q is con-

structed for the observations and Yt1 1⋯1Ytm 5 1,

since only one drought category is possible at each

time step.

The maximum likelihood estimation method is used

for parameter estimation. For given sequences of

USDM observations of m drought categories and

drought indices for n time steps, the likelihood function

can be obtained from Eqs. (6) and (7) as (Fokianos and

Kedem 2003; Guanche et al. 2014)

L5P
n

t51
P
m

i51

P(Y
t
5 i)uti , (9)

where uti51 for the category i in which the response falls

and uti 5 0 otherwise.

3. Data and measures

a. Data

1) USDM

The USDM is created weekly and is archived

and distributed by the National Drought Mitigation

Center at the University of Nebraska—Lincoln (http://

droughtmonitor.unl.edu/; Svoboda et al. 2002). The

USDM drought categories for the period from 2001 to

2014 are first digitized into 0.58 resolution and are re-

garded as the reference. The average USDM drought

categories for a certain month are obtained from weekly

products and are used to represent the ‘‘observed’’

monthly drought condition. The data for 2001–12 are

used for the estimation of parameters of the model, and

those for 2013–14 are used for validation.

2) NLDAS

The North American Land Data Assimilation System

project has been shown to be capable of capturing the

broad features of the energy flux, water flux, and state

variables (Xia et al. 2012). A near-real-time NLDAS

drought-monitoring system has been developed recently

that is based on a range of drought indices at different

time scales (Ek et al. 2011; Sheffield et al. 2012; Xia et al.

2014). In this study, monthly precipitation, soil moisture,

and runoff data from the community Noah model from

NLDAS-2, which is run by the National Centers for

Environmental Prediction (NCEP) Environmental

Modeling Center (Xia et al. 2014), were used to compute

drought indices for the modeling of drought cate-

gories. Following themethod ofMo (2008), three drought

indices—6-month standardized precipitation index

(SPI6), SMP (standardized with the normal distribution

based on a 3-month running mean), and 3-month SRI

(SRI3), representing meteorological, agricultural, and

hydrologic drought, respectively—were used to model

the drought category.

b. Measures

For probabilistic prediction (or forecasting) of

multiple-category events, the rank probability score

(RPS) has been commonly used for prediction eval-

uation (Wilks 2011). Let yj, j5 1, 2, . . . ,m, denote the

components of the probability forecast vector of

different drought categories corresponding to an

observed drought category. The observation vector

has m components oj, for which the component cor-

responding to the drought category that occurs is

equal to 1 and the other m 2 1 components are equal

to 0. The cumulative prediction and cumulative ob-

servation vectors (denoted asYi andOi, respectively)

are defined as

Y
i
5 �

i

j51

y
j

and (10)

O
i
5 �

i

j51

o
j
. (11)

The final component Ym and Om are all equal to 1 by

definition. The RPS is then defined to measure the sum

of squared differences between components of the

cumulative forecast and observations vectors, which

for a single forecast–event pair is expressed as (Wilks

2011)
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RPS5
1

m2 1
�
m

i51

(Y
i
2O

i
)2 . (12)

For a collection of n prediction pairs, the average RPS

can be used. The RPS covers the range [0, 1], with a

lower value indicating a better prediction.

To assess the improvement of multicategory drought

prediction relative to a reference prediction, the rank

probability skill score (RPSS) is used as the performance

measure; it is defined as (Wilks 2011)

RPSS5 12
RPS

RPS
ref

, (13)

where RPS and RPSref are the means of RPS for the

prediction from the proposed method and reference

prediction, respectively. The reference prediction of the

drought category for a specific period is defined as the

drought category of the previous period (or the persis-

tent prediction). RPSS ranges from 2‘ to 1. A value of

RPSS equal to 1 indicates a perfect multicategory

probability prediction, and a negative RPSS implies that

the model is performing worse than the reference. Pos-

itive RPSS indicates that the prediction from the pro-

posed method has better prediction skill than the

reference prediction.

4. Results

a. Model setup

With lag-1 USDM drought category and drought in-

dices SPI6, SMP, and SRI3 representingmeteorological,

agricultural, and hydrological droughts, respectively,

four models are chosen on the basis of different com-

binations of drought indices, as shown in Table 1. Model

1 is based on the combination of all three indices and

models 2, 3, and 4 are chosen by combining two indices.

For each model, more than one drought index is used to

model drought categories to illustrate the application of

the proposed method, since it has been well recognized

that multiple drought indices are generally required to

characterize the drought condition (Hao and Singh

2015; Svoboda et al. 2002; Xia et al. 2014).

An important step in modeling drought categories

with the proposed method is the selection of different

models in Table 1 for each grid point. In this study, the

Akaike information criterion (AIC; Akaike 1974) is

used for the selection of different models [or covariates

in Eq. (7)] for the statistical inference of drought cate-

gory. For each grid point, after parameter estimation,

the model in Table 1 with the minimum AIC is selected

and is then used to model drought categories.

b. Model estimation for 2001–12

The model parameter is first estimated with USDM

drought categories and NLDAS-2 drought indices for

the period of 2001–12. The sample grid point (latitude

288, longitude2988), which is located in southern Texas,

is used to illustrate the modeling of drought categories.

The AIC value for each model, as based on data from

2001 to 2012, for this grid point is shown in Table 1. As a

result, model 3 with drought indices SPI6 and SRI3 as

covariates in Eq. (7) is selected, because the corre-

sponding AIC value is the smallest. In specific terms, the

estimated model in Eq. (7) can be expressed as

log

"
P(Y

t
# j)

P(Y
t
. j)

#
5a

j
1b

1
SPI6

t
1b

2
SRI3

t
1gY

t21
,

(14)

where parameters are estimated as a 5 (211.45,

28.56, 26.21, 23.20, 20.16) corresponding to different

drought categories, b 5 (b1, b2) 5 (1.26, 0.63) corre-

sponding to different drought indices, and g 5 (12.16,

9.21, 7.94, 6.07, 3.49) corresponding to drought cate-

gories in the previous period (Yt21,1, . . . , Yt21,5) con-

structed from Eq. (8).

The drought category fromUSDM for the sample grid

point from 2001 to 2014 is shown in Fig. 1a (solid line),

from which it can be seen that serious drought events

occur (drought categories D2–D4) during 2001–12 (e.g.,

drought during 2006, 2008, 2009, and 2011). For ob-

served drought indices (SPI6 and SRI3) for this grid

point from 2001 to 2012 as shown in Figs. 1b and 1c,

values are generally low during 2006, 2008, 2009, and

2011, the combination of which indicates drought cate-

gories with serious drought conditions. The estimated

drought category at this grid point for the period 2001–

12 is also shown in Fig. 1a (dashed line).We examine the

drought condition in August 2008 as an example. The

drought category from USDM for this period is D2 and

that for the previousmonth (July 2008) is D3. The values

of drought indices SPI6 and SRI3 for August 2008 are

0.18 and 0.74, respectively, which do not indicate a

TABLE 1. Candidate models for categorical drought modeling as

based on USDM drought category and drought indices. The as-

sociated AIC value for different models of the sample grid point

(latitude 288, longitude 2988) in this study is also shown.

Model

candidate Model expression AIC

1 a 1 b1SPI6 1 b2SMP 1 b3SRI3 1 gYt21 225.73

2 a 1 b1SPI6 1 b2SMP 1 gYt21 230.30

3 a 1 b1SPI6 1 b2SRI3 1 gYt21 225.23

4 a 1 b1SMP 1 b2SRI3 1 gYt21 242.32
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drought condition. From Eq. (14), the estimated prob-

abilities for six different drought categories are 0.001,

0.012, 0.10, 0.61, 0.25, and 0.018, respectively. The

drought category associated with the highest probability

(i.e., D2 with highest probability 0.61) is selected as the

estimated drought category. Thus, for this period, the

change of drought category from D3 to D2 is accurately

estimated, as based on the USDM drought category of

the previous period and drought indices for the current

period. Overall, it can be seen from Fig. 1 that for this

grid point the estimated drought category is relatively

close to the observed drought category from USDM,

although a certain discrepancy may exist.

To further show the performance, the observed

drought category from USDM for a few periods, in-

cluding June 2006, July 2008, March 2009, and August

2011, in Texas is shown in Figs. 2a–d, along with the

estimated drought categories in Figs. 2e–h. The drought

condition in the form of drought categories is estimated

relatively well for these four months in Texas. For ex-

ample, for June 2006, the D3–D4 drought condition is

mainly clustered in northern and southeastern Texas

(Fig. 2a), with most of the remaining regions being

covered by D1–D2 drought categories. These drought

patterns are generally shown well from the estimation in

Fig. 2e. For July 2008 (Fig. 2b) andMarch 2009 (Fig. 2c),

the D3–D4 drought is mainly clustered in the southern

region, as is clearly seen from the estimation in Figs. 2f

and 2g, respectively. The 2011 drought event in Texas is

themost extreme 1-yr drought on record (Hoerling et al.

2013). For August 2011, the whole Texas region is cov-

ered by D3–D4 drought from USDM (Fig. 2d), which is

also captured by the proposed method in Fig. 2h. There

are certain discrepancies in limited regions in these four

periods. For example, for March 2009, most of eastern

FIG. 1. (a) Comparison of the USDM category (solid line) and

the estimated drought category (dashed line), along with observed

(b) SPI6 and (c) SRI3 values from NLDAS-2 (green dashed line)

for 2001–14 for the sample grid point (latitude 288, longitude2988).
The 1-month-lead prediction of drought category for 2013–14 is

shown in (a) (dotted line), and 1-month-lead statistical predic-

tions of SPI6 and SRI3 for 2013–14 are shown in (b) and

(c) (dotted lines).

FIG. 2. Drought categories from (a)–(d) USDM and (e)–(h) estimation for four months (June 2006, July 2008, March 2009, and August

2011) during 2001–12.
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Texas is covered by the D1 drought category from

USDM while large eastern regions are shown with the

D0 drought category from the estimation. Overall, the

model estimates drought categories well when com-

pared with USDM.

c. Model validation with observed drought indices
for 2013–14

The statistical model is then applied to the USDM

drought category and NLDAS-2 drought indices of the

period of 2013–14, which were not used in the model

estimation in section 4b, to evaluate the model pre-

dictive performance. For the sample grid point, the

drought category of the period of 2013–14 is estimated

with Eq. (14), with parameters estimated on the basis of

the data for 2001–12. The observed USDM drought

category for January 2013 is D3 (with drought category

D2 forDecember 2012). FromEq. (14), the probabilities

of D2 and D3 drought categories are 0.43 and 0.48

(probabilities of other drought categories are sub-

stantially lower, given that the summation is equal to 1),

and the drought category (D3) from USDM is correctly

estimated (with the highest probability 0.48). Notice that

the probability of D2 is close to that of D3 and is also

likely to be the estimated drought category. Thus, the

change of drought category from D2 to D3 is captured,

with a relatively high likelihood of drought condition

persisting with D2 category (0.43).

The drought category from USDM and the estimated

drought category for the validation for four months in

2013 (March, May, July, and September) is shown in

Figs. 3a–h. Drought categories from the validation

generally resemble the drought condition from USDM

well. For example, severe-drought conditions (D2–D4)

for March 2013 exist in northern Texas, are exacerbated

in the summer by July 2013, and then recover by Sep-

tember 2013. From Figs. 3e–h, these drought patterns

are revealed relatively well by the estimated drought

FIG. 3. Drought categories from (a)–(d) USDM, (e)–(h) validation, (i)–(l) 1-month-lead prediction, and (m)–(p) 3-month-lead prediction

for four months (March, May, July, and September) in 2013.
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categories (e.g., D3–D4 drought categories are esti-

mated in July 2013 in northern Texas). Overall, the

proposed method satisfactorily estimates the drought

categorical form for 2013–14 with parameters that were

estimated on the basis of data for 2001–12.

d. Drought prediction with predicted drought indices
for 2013–14

The model in Eq. (7) can then be used for operational

drought prediction in the categorical form, as based on

USDM drought categories as the initial condition and

drought indices from other sources, for which drought

indices from statistical predictions are used in this sec-

tion. To be specific, the prediction of drought indices,

including SPI, SMP, and SRI, is obtained through the

baseline drought prediction (Lyon et al. 2012), which is

similar to the concept of ensemble streamflow pre-

diction (ESP; Day 1985).

For an L-month-lead drought prediction, the

equation for predicting a drought category Yt1L can

be expressed as

log

"
P(Y

t1L
# j)

P(Y
t1L

. j)

#
5a

j
1bW

t1L
1gY

t1L21
, (15)

where Wt1L is the L-month-lead prediction of drought

indices from the baseline drought prediction, and

Yt1L21 is the lag-1 drought category.

When L . 1, the lag-1 drought category Yt1L21 is

assumed to be the predicted drought category in the

previous time step. For example, the equation for

2-month-lead prediction (L 5 2) for the target period

t 1 2 can be expressed from Eq. (15) as

log

"
P(Y

t12
# j)

P(Y
t12

. j)

#
5a

j
1bW

t12
1gY

t11
, (16)

where Wt12 is the 2-month-lead prediction of drought

indices for the target period t 1 2 from the baseline

method and Yt11 is the predicted USDM for the period

t 1 1 from Eq. (15).

From the USDM drought category as the initial con-

dition and drought indices from a statistical baseline

drought prediction, drought categories can be predicted

with Eq. (15) several months ahead. For the sample grid

point, the 1-month-lead prediction of drought category

for 2013–14 is shown in Fig. 1a (dotted line) as based on

lag-1 USDM category and 1-month-lead predictions of

SPI6 (Fig. 1b) and SRI3 (Fig. 1c; dotted line), which

show satisfactory prediction of categorical drought

when compared with that from USDM (Fig. 1a). For

example, for January 2013, the predicted SPI6 and SRI3

values are21.20 and20.95, respectively. On the basis of

theUSDMdrought categoryD2 for December 2012 and

predicted SPI6 and SRI3 for January 2013, the estimated

probabilities of drought falling in the D2 and D3 cate-

gories for January 2013 are 0.58 and 0.30, respectively.

The predicted drought category is assignedD2, since the

associated probability is the highest among all cate-

gories. Although the change of drought category from

D2 to D3 is not correctly predicted in this case, the

relatively high probability (0.30) of changing to the D3

drought category is estimated from the model.

Figures 3i–p show 1- and 3-month predictions of the

drought category for four months in 2013 (March, May,

July, and September) in Texas. The 1-month prediction

generally resembles the drought condition from USDM

relatively well. For example, patterns of drought de-

velopment in northern Texas (including severe-drought

conditions during May and July) are shown fairly well

when compared with drought category from USDM in

Figs. 3a–d. For 3-month drought prediction in Figs. 3m–p,

the prediction generally degrades relative to that for

the 1-month prediction. For example, for September

2013, the D0 drought category is predicted in the

northeastern region but the drought categories from

USDM are D1–D3. The prediction does show useful

information in certain regions, such as northern Texas

(e.g., D3–D4 drought categories for March 2013).

e. Prediction-skill assessment

The prediction skill of the proposed method is then

assessed with RPSS to analyze the improvement over

the reference prediction (i.e., a ‘‘persistence’’ forecast).

The value of RPSS of the estimated drought category as

based on the estimation (or the 0-month-lead pre-

diction) for 2001–12 is shown in Fig. 4a. It is seen that

RPSS is positive in the whole region, indicating satis-

factory estimation of the drought category by the pro-

posed method. In other words, the prediction with the

USDM as the initial condition and drought indices from

NLDAS-2 performs better than that from only the

persistence of the drought category. Meanwhile, the

performance of the proposed method in the categorical

drought estimation with respect to that from only the

individual drought index is also assessed to illustrate the

improvement over the individual index (regarded as

the reference prediction in this case). For simplicity,

drought indices SPI (i.e., SPI6 in this study) and SMP,

which are heavily used in the development of USDM,

are used as references, for which the estimation of

drought category follows the percentile approach rec-

ommended by USDM (Svoboda et al. 2002). The RPSS

values of the estimated drought category as based on the

reference SPI (Fig. 4b) and SMP (Fig. 4c) for 2001–12 in
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Texas are consistently positive and relatively high,

which confirms that the proposed method performs

better than the individual index in estimating the

drought category. This is understandable, since a unique

feature of USDM is that it takes into account multiple

drought indices from a variety of sources. In the fol-

lowing, we will focus on the comparison using persis-

tence as the reference prediction. RPSS of the estimated

drought category on the basis of the validation for 2013–

14 with the drought indices from NLDAS-2 is shown in

Fig. 4d. It is seen that in most regions RPSS is positive,

indicating good performance of drought category pre-

dictions, although negative RPSS is shown in limited

regions.

The RPSS values for 1- and 3-month predictions with

the initial condition of USDM and drought indices

from the statistical prediction are shown in Figs. 5a and

5b (for 3-month prediction, the reference forecast of

the period t is defined as the observed value of the

period t 2 3), respectively. In large portions of the re-

gions, the RPSS value is positive for 1- and 3-month

predictions, indicating better prediction from the pro-

posed method than the reference (or persistence pre-

diction). For the 3-month prediction, the RPSS value is

negative in certain regions (e.g., northeastern Texas),

indicating that the prediction performance drops off at

longer lead time and that the proposed model is not

performing as well as the reference. To further show

the prediction performance, the bias of the drought

category (drought category from 1- and 3-month pre-

diction minus the observed USDM category) for 2013–

14 is shown in Figs. 5c and 5d. For 1- and 3-month

predictions, generally the drought category is under-

estimated to some extent in the northeastern region

and is overestimated in parts of western and south-

western regions. The lag in the performance of 1- and 3-

month prediction dropping off (or the lag at which the

RPSS hits zero or negative value) is shown in Fig. 5e

(i.e., 0 means that the proposed model is not as good as

the persistence prediction at lag 0 and 3 means that the

proposed model performs better than the persistence

prediction at lag 3). In certain northeastern regions and

limited areas in the western and southwestern regions,

the prediction drops off at 0 lag; in parts of the central

and eastern regions, the proposed method outperforms

the persistence prediction at lag 3.

The prediction performance of the proposed method

in this regard is determined by both the initial drought

FIG. 4. RPSS for estimation as based on 2001–12 with the reference defined as (a) persistence, (b) SPI, and (c) SMP,

and (d) the validation as based on 2013–14.
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condition from USDM and the prediction performance

of drought indices from the baseline statistical pre-

diction. A systematic analysis of the impact of initial

condition and statistical prediction on categorical

drought prediction in Texas or other regions is beyond

the scope of this study and will be carried out in the

future. It is also recognized that, because of the short

record of USDM, the prediction performance evalua-

tion in this section is based on observed USDM cate-

gories of two years, which may lead to some uncertainty

in the assessment. Overall, the proposed method per-

forms better than the persistence prediction of the

drought category in most regions of Texas and shows

good potential in operational drought prediction to aid

early drought warning.

5. Discussion and conclusions

Astatisticalmethod is proposed for categorical drought

prediction by integrating the USDM drought category as

the initial condition with a suite of drought indices from

other sources, such as land surface simulation or statistical

prediction. The proposed method is tested in Texas for

the period from 2001 to 2014 using USDM drought cat-

egories and drought indices from NLDAS-2, and results

demonstrate its satisfactory performance in predicting

drought categories. Considering the wide application of

USDM, drought prediction in the same categorical form

from this study shows great promise to aid drought early

warning and would be useful and convenient for de-

livering drought information to decision makers.

FIG. 5. RPSS for (a) 1- and (b) 3-month-lead drought prediction, along with (c), (d) the corresponding bias of the

drought category for 2013–14. (e) The lag of the prediction dropping off.
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Because of the complicated nature of drought, using

three drought indices representing meteorological, agri-

cultural, and hydrological drought that are based on

precipitation, soil moisture, and runoff, respectively, may

not be sufficient to characterize the drought condition in

operational applications, and different combinations of

drought indices would be needed in different regions and

seasons to facilitate reliable drought prediction. In addi-

tion, only the lag-1 USDM drought category and drought

indices for the target period are used as the covariate for

the prediction of the drought category. In theory, USDM

drought categories for different lags in the historical pe-

riod and drought indices previous to the target period

may also be incorporated in themodel to further improve

the prediction. In the model setting, a relatively large

number of parameters are possibly involved to account

for different drought categories and drought indices,

which may be a potential limitation of this model. Con-

sidering the relatively short record of USDM, it is desir-

able to keep the model parsimonious in practical

application. In the proposed method, when estimated

probabilities of two (or more) drought categories are

close it is challenging to specify the estimated drought

category for decision making. In addition to selecting the

drought category with the highest probability, other

methods (e.g., probability-weighted average of drought

categories with associated probabilities) may be used.

The statistical ESP method employed in this study to

predict drought indices (SPI, SMP, and SRI) of meteo-

rological, agricultural, and hydrologic drought in the

target period can be revised or extended to improve the

statistical prediction performance. Various extensions

of the ESP method, which are generally based on the

constructed analog or conditional relationship with cli-

mate indices, have been explored to aid the prediction of

hydroclimatic variables, including precipitation, tem-

perature, and streamflow (Delle Monache et al. 2013;

Shrestha et al. 2015; Shukla et al. 2014; Wang et al. 2011;

Werner et al. 2004; Yuan et al. 2013), which can also be

used for drought prediction. For example, the ESP

method can be revised to facilitate drought prediction

on the basis of selecting or weighting historical samples

either through searching historical records in past situ-

ations similar to those in progress (termed ‘‘analogue

ESP’’; Yao and Georgakakos 2001) or conditioning on

climate indices (termed ‘‘conditional ESP’’; Hamlet and

Lettenmaier 1999; Trambauer et al. 2015). In this man-

ner, categorical drought prediction may be improved

through the refined prediction of drought indices. In

addition, instead of using the statistical prediction of

drought indices, the proposed method can also be ex-

tended to integrate advances in dynamical climate pre-

diction, such as NCEPClimate Forecast System (CFSv2;

Saha et al. 2014; Yuan et al. 2011) or North American

Multi-Model Ensemble (NMME; Kirtman et al. 2014;

Mo and Lyon 2015), to facilitate categorical drought

prediction, which will be assessed in the future. More-

over, the proposed method can also be extended to

incorporate information from other sources, such as

large-scale atmospheric circulation patterns (e.g.,

ENSO), as covariates in the ordinal time seriesmodeling

to improve drought prediction in certain regions.

The proposedmodel essentially takes into account the

previous USDM drought category, which can be regar-

ded as the initial condition, and drought information

from other sources, which can be land surface simulation

and statistical prediction to provide possible drought

conditions in the future, to perform a categorical

drought prediction. It inherently combines multiple

sources of drought information to facilitate drought

prediction and thus meets the need of an integrated

approach in drought characterization that has been

highlighted recently. A categorical integrated drought

monitoring and prediction system (CIDMAPS) is under

development with the proposed method. Because the

statistical prediction of drought indices employed in

this study is based on the baseline drought prediction

(Lyon et al. 2012), this study essentially establishes the

baseline of the categorical drought prediction. The

proposed method provides a flexible tool for drought

prediction in categorical form in different regions in

the United States and would be useful for early drought

warning for operational drought management to re-

duce potential impacts.
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